
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP020801
TITLE: Collectives for Multiple Resource Job Scheduling Across
Heterogeneous Servers

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems [2nd], Held in Melbourne, Australia on
July 14-18, 2003

To order the complete compilation report, use: ADA440476

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP020574 thru ADP020817

UNCLASSIFIED



Collectives for Multiple Resource Job Scheduling Across
Heterogeneous Servers

Kagan Turner John Lawson
NASA Ames Research Center NASA Ames Research Center

Mailstop 269-4 Mailstop 269-2
Moffett Field, CA 94035 Moffett Field, CA 94035

kagan @ email.arc.nasa.gov lawson @ email.arc.nasa.gov

ABSTRACT server stays the same, i.e., the load on the system is balanced

Efficient management of large-scale, distributed data stor- across all the servers. Load balancing though assumes that
age and processing systems is a major challenge for many the load being distributed across the servers is a de-facto de-computational applications. Many of these systems are char- sirable solution. In the multi-resource case, this assumption

acterized by multi resource tasks processed across a hetero- leads to suboptimal solutions [1]. The agent based approach

gencous network. Conventional approaches, such as load we propose sidesteps this potential mismatch between bal-

balancing, work well for centralized, single resource prob- ancing the load across the network and optimizing the world

lems, but breakdown in the more general case. In addition, utility function. As long as that system behavior is good for

most approaches are often based on heuristics which do not the world utility, no consideration is being made to "split"

directly attempt to optimize the world utility. In this paper, the load or make the jobs processing "fair" in any way.

we propose an agent based control system using the theory A traditional reinforcement learning, multi-agent systems

of collectives. We configure the servers of our network with for this problem would consist of an agent receiving either

agents who make local job scheduling decisions. These de- the full world reward (e.g., team game), or a reward con-

cisions are based on local goals which are constructed to be cerning only its actions (e.g., a selfish reward). In general,
aligned with the objective of optimizing the overall efficiency team game solutions suffer from the signal-to-noise problem

of the system. We demonstrate that agents configured using in which an agent has a difficult time discerning the effects

collectives outperform both team games and load balancing, on its actions on its utility, because that "signal" is get-

by up to four times for the latter. ting swamped by the "noise" of the other agents. Selfish
utilities on the other hand suffer from coordination issues,
where actions that may be beneficial to one agent may cause

Categories and Subject Descriptors significant damage to the system overall.

1.2.11 [Distributed Artificial Intelligence]: Multiagent The theory of collectives [4] is concerned with overcom-
systems. 1.2.6 Learning ing the shortcomings of team games and selfish utilities. 1

In particular, it is concerned with providing agents with
with rewards that are both "learnable" i.e., they have good

Keywords signal-to-noise ratios, and are "factored" i.e., the utilities

Reinforcement learning, Job Scheduling, Computational Grid, are aligned with the world utility.
Multi-resource optimization, Collectives

2. SYSTEM MODEL
1. INTRODUCTION We modeled such a computational system as a network

With increasing demand for supercomputing resources (e.g., of N servers each with K resources (ri, ...rk). Each server
biological applications), the ability of a system to efficiently had a specified capacity for each resource assigned to be an
schedule and process jobs is becoming increasingly impor- integer ranging from [1, M]. Thus, M was a measure of the
tant. As such, heterogeneous computational grids where heterogeneity of the resources. Jobs were also specified by K
jobs can enter the network from any point and be processed resource requirements ranging from [1, M]. Each server had
at any point are becoming increasingly popular. For the its own wait queue for jobs. Jobs entered the local queues
single-resource case, this problem has been extensively stud- either externally or were shipped from other servers.
ied [2]. However, multi-resource job scheduling across a net- If the processor was available, and the resource require-
work of heterogeneous servers (e.g., CPU speed, memory) is ments met, the server would activated the first job in the
a difficult problem that has received much less attention [1]. queue. If the processor was available, but the server did not

Load balancing (LB) has been successfully applied to sin- have the resource capacity to run the job, the server would
gle resource scheduling problems. In its simplest form, load remain idle until the problem job was sent to another server.
balancing aims at ensuring that the level of activity on each This is expected to be one the main causes of bottlenecks

'A collective is defined as a multi agent system in which
Copyright is held by the author/owner, there is a well-defined world utility function that needs to
AAMAS'03, July 14-18, 2003, Melbourne, Australia. be optimized, and where each agent takes actions based on
ACM 1-58113-683-8/03/0007. its own private utility [3].

1142



in the system and will be an issue that an intelligent job Table 1: System Processing Efficiency_(r=O.2,M=8)
management system will need to address. a Algorithm P Net Efficiency Perc G:ain:81

For a K resource-problem, we assigned 2 K agents per Algorithm Ne___ inc__ci
server and partitioned the space of jobs each agent has to Opt Estimate 1.0
deal with. Each agent had a a vector 5 whose components RAND 0.6435
give the probability of routing a job to its neighbors. So the SU 0.6345 -2.53%
agents' actions are to set their own probability vector. TG 0.6703 7.51%

At each time step T, new jobs were added to the system DU 0.7932 41.97%
and placed in the wait queue of randomly selected servers. LB 0.2254 -117.28%
In particular, each server had a probability r of receiving a
new job at each time. If a given processor was idle, and the
first job in the queue met the resource requirements, that Table 2: System Processing Efficiency (r=0.8,M=2)
job would be activated. If not, the server would remain idle. Algorithm Net Efficiency Perc Gain
In addition, for each T, the server would make a decision Opt Estimate 0.781
about the first job in the queue, deciding whether to keep RAND 0.6260 -
the job or sent it to a neighboring server. These decisions SU 0.6140 -7.78%
were made based on the agents' probability vectors which in TG 0.6376 7.48%
turn are set using reinforcement learning algorithms. DU 0.6911 41.98%

Thus, there were two main sources of inefficiency in the LB 0.6446 11.97%
system. The first were the bottlenecks created by jobs whose
requirements exceeded the capacity of their server. When
such a job got to the front of the queue, the server remained that in all cases the learning based approaches are compet-
idle until the job was shipped to a neighbor. The second itive or significantly outperform load balancing. Load bal-
source of inefficiency arose from mismatches between a pro- ancing performs poorly for high M (high heterogeneity). In
cessor's speed and a job's cycle requirement. fact, even setting the probability vectors at random (RAND)

We distinguish between two time scales: 7- gives the time outperforms load balancing for M = 8, r = 2. It is also in
steps at which the jobs enter the system, move between these l oad M alani ng for b o adaptive
queues, and are processed, whereas t gives the time steps these large M regimes that approaches based on adaptive
at which the agents observe their utilities, change their ac- learning algorithms would be expected to do well. Simula-tinetc. This distinction is important because it is the tions results show large increases in performance by having
tions, wty a i agent ion is ig n t because s the the probability vectors set using reinforcement learning.
only way an agent can get a "signal" from the system that These results also show the importance of setting the
will reflect the impact of its decision, i.e, the system has to agents' personal utilities to be functions that are both "fac-
settle down before a reward can be matched to an action. tored" and "learnable". The team game (TG) utility is
Therefore, an agent 77 changes its probability vector at each factored trivially, but has poor learning properties for the
time t. Within a single time step t though, many jobs enter individual agents since it includes information from the full
the system, are executed, routed etc. each of which occurs system. The selfish (SU) utility is expected to be more learn-
at time interval -r (t >> 7-). able since it only includes effects of individual agents, but it

For this problem, the world utility, G, is the weighted is not factored (aligned with the world utility), and therefore
ratio of the all the jobs that were processed at time step t could be doing a good job of learning the wrong thing. The
to all jobs that entered the system at that time step. The difference utility (DU) derived using the theory of collectives
"difference" utility (DU) of an agent is the weighted fraction isferenced ad lerive. u sistently o forms
of jobs that were touched by that agent to the jobs that is both factored and learnable. It consistently outperforms
entered the system. This is different than a "selfish" utility TG and SU for all parameter pairs (r, M).
(SU) which is the ratio of the jobs processed by the system
at time step t to the total jobs that passed through that 4. REFERENCES
agent. (Note DU concerns the agent's impact on the system [1] W. Leinberger, G. Karypis, V. Kumar, and R. Biswas.
whereas SU only concerns the agents' success at getting "its Load balancing across near-homogeneous
own jobs" processed.) multi-resource servers. In Proc. 9th Heterogeneous
3. RESULTS Computing Wksp, pages 61-70, Cancun, Mexico, 2000.

[2] B. A. Shirazi, A. R. Hurson, and K. M. Kavi.
We ran extensive simulations on networks of N = 50 Scheduling and Load Balancing in Parallel and

servers having K = 2 resources, and compared our agent- Distributed Systems. IEEE Comp. Soc. Press, 1995.
based approach against a fixed, deterministic version of multi- [3] K. Ttimer, A. Agogino, and D. Wolpert. Learning
resource load balancing. The 50 servers had 4 agents each, sequences of actions in collectives of autonomous
making for 200 total agents. (The results were averaged over agents. In Proc. of the First International Joint Conf.
50 different randomly generated network configurations.) on AAMAS, pages 378-385, Bologna, Italy, July 2002.
The servers were connected into a network having a ring [4] D. H. Wolpert and K. Turner. Optimal payoff functions
configuration with random connections added in the spirit for members of collectives. Advances in Complex
of "small world's" networks. In general, each server had 2-4 Systems, 4(2/3):265-279, 2001.
neighbors with which it had a direct connection.

Tables 1-2 show results for the absolute and relative per- we provide an estimate for the upper bounds on performance
formance 2 for the different algorithms at t = 400. Notice based on the number of jobs in the system. The percentage

gain reflects how much of the gap between random and the2Because it wasn't always possible to attain 100% efficiency upper bound is covered by the algorithm.

1143


